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Figure 1. Mirror Puppeteering is a system for creating gestures for a robot by moving its limbs in front of a webcam. First, a robot tagged with
markers self-calibrates in front of a webcam, building up a map between motor angles and camera-space marker locations (top left). The user then
creates animations by puppeteering the robot’s limbs in realtime (top middle). Animations are played back by the stand-alone robot (top right), or can
be transferred to control animated characters. We demonstrate our system on a variety of homemade robots, the commercial toy My Keepon, and
two virtual characters (bottom row).

ABSTRACT
Mirror Puppeteering is a system for easily creating gestures
(“animations”) for robotic toys, custom robots, and virtual
characters. Lay users can record animations by simply mov-
ing a robot’s limbs in front of a webcam. Makers and hob-
byists can use the system to easily set up their custom-built
robots for animation. Gamers and amateur animators can
real-time control or save animations for virtual characters.
Our system works by tracking circular markers on the robot’s
surface and translating these into motor commands, using a
calibration map between marker locations in camera space
and motor angles. New robots can be quickly set up for Mir-
ror Puppeteering without knowledge of the robot’s 3D struc-
ture, as we demonstrate on several robots. In a user study,
participants found our method more enjoyable, usable, easy
to learn, and successful than traditional animation methods.
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INTRODUCTION
With the increasing accessibility of robot kits, microcon-
troller platforms, home manufacturing methods, and cheap
actuators, more people are building and buying simple low-
cost robots than ever before. Some of these are commercial,
such as the Karotz robotic companion, My Keepon, or the
Jibo family robot, while others come in the form of assembly
kits, such as the CrustCrawler construction set or the Robo-
tis Bioloid series. In addition, hobbyists and “makers” are
increasingly building their own robots using 3D-printed and
laser-cut parts and sharing their creations online.

A major element in the appeal of these robots is the expres-
sivity of their movement and gestures, which need to be care-
fully designed to evince emotion and intention. However,
designing expressive robot motion is challenging. It lies
mostly in the realm of professionals, depending on meticu-
lous programming, or techniques from 3D animation, which
come with a significant learning curve. In contrast, we are
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interested in low-end amateur motion generation: animation
of toy robots by lay users with no technical background.

This paper presents a novel approach and system we call
Mirror Puppeteering, which allows makers and lay users to
create expressive animations for simple robots at home, by
directly puppeteering them in front of a webcam. Our system
does not depend on knowing the 3D model of the robot, nor
does it require high-end hardware on the robot or the user’s
PC. Instead it is a software system that only needs a webcam
and cheap actuators with no position feedback.

We make use of the fact that many home-made or store-
bought desktop robots are small, have a stationary base, and
have few degrees of freedom. This makes such a robot struc-
turally simple enough that if it could merely “take a look at
itself in a mirror”, it should be able to figure out what mo-
tion it is undergoing. We provide such a mirror, and the
computation to translate the mirror image into a direct pup-
peteering system. From a technical perspective, our method
works by converting markers captured in a webcam image
to motor angles using a calibration map either provided with
the robot or generated by the user.

DESIGN GOALS
Our aim in designing “Mirror Puppeteering” was to bring the
expressive power and direct manipulation of puppeteering to
low-cost robotic toys and lay users.

Puppeteering—the process of animating virtual characters
and robots by moving a real-world physical model—has long
been a useful technique in the toolbox of both animators
and robot motion designers. Using the body and gestures
to explore the animation space is an intuitive and rich way
to express movement, allowing the quick and easy creation
of complex motions that would be tedious to keyframe or to
describe numerically.

However, today’s puppeteering systems rely on high-end mo-
tion capture systems, custom waldos, mechanical proxies, or
sensor-equipped actuators, making these methods more ap-
propriate for professional and semi-professional settings.

In contrast, we want to allow the use of out-of-the-box low-
cost puppets for which anyone can quickly create expressive
motions. This should ideally be as easy as playing with the
robot itself.

This leads us to the following design goals:

• Easy to Learn and Use — The system is intended for
lay users, with no technical background, and for hobby-
ist makers. It should be easy to learn and use. It should
work out-of-the box with direct manipulation and one-
click controls.

• Fits Low-cost Robotic Toys — To work with commercial
robotic toys and home-made robots, the system should not
rely on motor sensors, position feedback channels, or so-
phisticated robot hardware.

• Makes Use of Existing Hardware — For wide accep-
tance, we aim for a software-only system that does not
require high-end computing hardware on the user’s side
either.

• Robust — Given the low-cost hardware and consumer-
grade computing requirement, the method should be ro-
bust enough to be feasible for home use.

• Customizable for new robots and toys — To make this
appealing for makers, the system should be easily adapted
to new custom-made robots. Makers should be able to
quickly set it up with no more complexity than building
and programming their simple robot.

USER SCENARIOS
We illustrate how “Mirror Puppeteering” addresses these goals
by presenting scenarios of three kinds of users (Fig. 2): The
novice user generates animations for the robot by puppeteer-
ing it out of the box in a set position in front of the cam-
era. A more sophisticated user can set the robot in a dif-
ferent robot-camera configuration and run the robot’s self-
calibration procedure with the press of a button. Finally,
“makers” can build their own robots and quickly set them
up to be animated with Mirror Puppeteering.

Novice (Puppeteering only)
In the simplest use-case, the novice user buys a toy robot,
which comes with a number of preset gestures and expres-
sions, but also with the capability of authoring new gestures
using “Mirror Puppeteering”. To do so, the user places the
robot in front of a webcam, the robot’s “mirror”, in one of
a choice of preset positions indicated by outlines drawn on
the camera video view. The user then presses “Record” and
starts puppeteering the robot by moving the desired limbs
in realtime. The user can also layer movements one limb at
a time (i.e., animating one part, rewinding the timeline and
then animating others). When puppeteering is completed,
the user presses the “Stop” button, and the robot can save
and play back the animation without the need for a camera.

Advanced User (Calibration + Puppeteering)
As mentioned above, the robot would ship with a number
of pre-set camera positions for animation. However, an ad-
vanced user might want to set up the robot in a different po-
sition, for example to use two robots at once in a robot the-
ater scene. To do so, the advanced user places the robot in
the desired position and runs a firmware self-calibration rou-
tine with a single press of the “Calibrate” button. The robot
moves its motors through all degrees of freedom to gener-
ate an up-to-date calibration for the new position. The new
configuration is stored, and used for as many puppeteering
sessions as the animator likes.

Maker (Design + Calibration + Puppeteering)
For “makers”, Mirror Puppeteering allows rapid prototyping
of new home-made robots. The maker builds a robot using
robotics kits, 3D-printing, or laser cutting, in combination
with hobby servos or stepper motors controlled through a
micro-controller board. Once the robot is built, the maker
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Figure 2. Three uses of Mirror Puppeteering. Novice users can simply
puppeteer and playback (top row); advanced users can create new cal-
ibration maps in different scenarios (middle expansion); makers can
quickly prototype new robots (bottom expansion).

simply attaches temporary markers to the robot’s exterior
and includes a short self-calibration routine as part of the
robot’s firmware.

Relation to Design Goals
These use-cases, in combination with our user study, demon-
strate the way “Mirror Puppeteering” addresses our design
goals. We evaluate ease of learning and use in a user study
involving novices with no prior gesture animation experi-
ence. We find that participants rate continuous puppeteering
more usable, easier to learn, more successful, and more en-
joyable to use than traditional keyframing.

To demonstrate the feasibility of our system for consumer-
grade robotic and PC hardware, we apply it to a low-cost
robotic toy, My Keepon. We also run the software for all our
demo robots using a standard MacBook laptop.

Our computer vision algorithm is designed for robustness,
with the home user in mind. Marker detection is done per-
frame, not tracked over time, thus vision errors do not accu-
mulate and markers can pass in and out of occlusion. Our
formulation of the matching algorithm is robust to detection
failure and ignores excess markers in the background.

Finally, the self-calibration routine means that new robots
can immediately use our system; the user need not import or
specify the joint hierarchy or 3D model. In fact, we have
been able to build five different custom robots, each in a
few hours, and use our system to animate them without al-
tering the software in any way. We also used the system
with a store-bought robot toy, demonstrating the use case of
a hacker retrofitting a commercial product.

Figure 1 and the accompanying video clip show the general-
izability of Mirror Puppeteering through the variety of robots
we animated using our system. The robots include, among
others, a 2-axis robotic drawing machine, a robotic gripper,
four dancing felt snakes, and a soft commercial robotic toy.
We also used our system to control and animate two virtual
characters.

RELATED WORK
Methods for animating robots present tradeoffs between the
level of control over the final animation, and the ease and
naturalness of the animation process. At the highest level of
control, robot motion is programmed numerically in code.
A step forward in usability is designing the motion in 3D
animation software and then exporting the generated motion
into motor space. The process is time-consuming but al-
lows a fine level of control, making it mostly appropriate for
highly trained professionals.

In contrast, using human motion to animate a robot is acces-
sible even to non-professionals, and enables a high level of
naturalness by taking advantage of the embodied coordina-
tion of the human body. In previous work, data from mo-
tion capture systems has been retargeted to animate complex
robots and characters [14, 19]. Human motion for anima-
tion can be captured more cheaply, but with fewer degrees of
freedom, using video [7], accelerometers [16], depth cam-
eras [9], force sensors [10], and multitouch input devices
[17]. Proxy objects, such as the sensing stuffed toy used
in Sympathetic Interfaces, can also be used [12]. Motion
retargeting, however, comes with a price: robots can have
markedly different morphologies than humans, and in the
transfer of the motion to the robot physiology, small-scale
motion fidelity is lost. Our work, instead, works by directly
puppeteering the robot.

Direct puppeteering takes advantage of the identity of in-
put and output, while still allowing direct embodied control
over the motor trajectories. This method generally relies
on actuator proprioceptive sensors. In previous puppeteer-
ing work, a sensing robot spine for dancing stuffed animals
[3] uses the Robotis Dynamixel line of servos with serial-
readable encoders. Other actuated sensing platforms include
an active puppet [20]; Curlybot, a toy that can replay mo-
tion [8]; and Topobo, a construction set with kinetic memory
[15]. In contrast to our system, they all come with position-
readable actuator hardware, usually not found in low-end
robotic toys. Although it is possible to hack the latter to get
encoding feedback, the servo must be powered (thus non-
backdrivable) to read the encoder, so this trick is not viable
for puppeteering.

A related field, also using sensor-equipped robots, is “learn-
ing by demonstration” (see [4] for a survey). Training ex-
amples are created for the robot, e.g. by teleoperation, hu-
man motion capture, or kinesthetic teaching, where a human
guides the robot to show it how to point to an object [13],
perform a task [2], or gesture [6]. In contrast to ours, the ap-
plication domain for these is mostly industrial and concerned
with movement generalization for high-end robots.

Using an external camera to record motion presents a tempt-
ing alternative to sensors, as cameras are cheap, reusable,
and noninvasive. Puppeteering systems can track 2D paper
cutouts using an overhead camera [5], and 3D objects using
a depth sensor [11]. Motion capture systems have been used
to calibrate robot motors [18]. None of these, however, have
used a webcam to directly puppeteer a robot.
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SYSTEM DESCRIPTION
“Mirror Puppeteering” works by converting markers to mo-
tor angles using a calibration map either provided with the
robot or generated by the advanced user. This mapping is
a lookup table from markers on the robot viewed in camera
space, to motor angles; it is thus generated once per robot
and camera position.

The method consists of three stages: self-calibration, pup-
peteering, and playback. In self-calibration, the robot moves
each of its limbs through its full range, streaming the limb’s
current motor commands to the computer. Simultaneously,
the moving markers are detected in the webcam frames, al-
lowing the software to build up a calibration map between
motor angles and camera-space markers. This stage needs to
be done only once per camera-robot configuration, and can
be done ahead of time as part of the robot’s factory settings.
In puppeteering, the animator moves the robot through its
desired trajectories, and our software detects markers in the
camera image. For each frame, the system scans through the
limb’s map, to find the entry with markers in a similar posi-
tion as the current camera frame. Once a match is found, the
corresponding motor angles are added to the animation time-
line. In playback, the robot uses the stored motor commands
to recreate the movement. This stage does not require mark-
ers or a camera. Replay can be duplicated and transferred to
a different robot, or to a virtual character.

Note that, at no stage, did we need to give the software any
knowledge of the robot’s geometry, joint hierarchies, input
limits, or self-collisions. Instead, we maintain the paradigm
that it is the robot that embodies self-knowledge; our “mir-
ror” is a hardware-agnostic tool for the robot to look at itself.
Any new robot with the right calibration routine can be used
out-of-the-box, without altering the mirror software.

We split the description of the system into four parts:

1. Self-Calibration we describe the automatic calibration
stage, including marker placement and tracking.

2. Puppeteering we describe puppeteering in realtime con-
tinuous mode and tracked keyframing mode, and detail
the matching algorithm and graphical user interface.

3. Playback and Beyond we describe ways in which the
data collected during Mirror Puppeteering can be used,
beyond direct playback.

4. Prototype we describe the hardware setup we used in our
Mirror Puppeteering prototype.

Self-Calibration
In the self-calibration stage, our software tracks markers placed
on each of the robot’s limbs. We use markers consisting of
dark circles on a light background. We chose these markers
not only for their traceability, but also because they can be
easily incorporated into a robotic puppet, e.g. as eyes.

We identify markers in realtime using OpenCV; with a web-
cam resolution of 1280x720, median blur and marker detec-

Figure 3. The cookie jar robot calibrating its head, with the calibration
map visualized as a colored overlay onscreen.

tion are actually the speed-limiting part of our software, run-
ning at circa 18 fps on a 2GHz quadcore processor. We ex-
perimented with using QR codes and various marker shapes
and colors to provide identification and orientation informa-
tion, and found circles to be the only shape whose tracking
is robust to the significant amount of motion blur.

The markers need to be placed such that in any given robot
pose, at least one marker will be visible at the end of every
motor chain. For this purpose, we define a motor chain as an
ordered set of motors from the robot base to an end effector.
When referring to motors, we use the notation

chaini ≡ (motori1 ,motori2 , . . . ,motoriN )

Motors can belong to more than one chain; for instance, if
motors are arranged in a “Y” configuration, the base motor
belongs to two chains, and is therefore both motor11 and
motor21 . The angle of motorij is denoted θij .

One marker visible in the 2D camera view is sufficient to
characterize a two-motor chain. In a chain of length N > 2,
each additional motorij , j ≤ N − 1, added to the base of
the chain, requires a marker to always be visible on the robot
limb between motorij and motorij+1

.

We do not track marker trajectories over time, nor label the
markers; each frame provides only a set of marker locations
and sizes. Our philosophy is to build a stable system by mak-
ing use of the parts of computer vision that are very accurate:
blob (marker) finding in a single frame is mostly repeatable
and mistakes do not accumulate; in contrast, attempting to
label markers over time as they come in and out of occlusion
is more error prone.

We will use { (xk, yk, rk) } to refer to the set of markers,
with x and y coordinates in camera frame space and radii
r (as a proxy for z position), detected in a given frame k.
During the calibration phase we compute which markers are
in motion. We maintain a one-second buffer of marker sets;
to compute whether a marker in the current frame is moving,
we look one second earlier and check if there was a marker
in the same location and size as the current marker. If not,
the marker is defined as moving.

To calibrate the robot, it is positioned in front of the webcam
as shown in Figure 3. By clicking on the “Calibrate” but-
ton in the interface, a signal is sent to the microcontroller to
begin the calibration routine. In this routine, the microcon-
troller takes each chain in turn, and moves the chain through
every combination of angles it can assume. With each change
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in angle, the microcontroller sends the list of motors in the
chain, and their current angles, to the software for record-
ing. As the software receives the angles over serial for each
chaini, it simultaneously finds the markers {(xk, yk, rk)}
that are moving in the current camera frame. The software
then stores this combination as one calibration map entry in
calibi, matching the angles and the moving markers:

calibi[(θi1 , θi2 , . . .)] = {(xk, yk, rk)} (1)

Calibration for the cookie jar robot seen in Figure 1 takes
roughly 5 minutes. The arm is moved from its lowest posi-
tion to its highest, in increments of ∼1°. For each 3° yaw
of the head, the head does a full up-down sweep. For chains
of length N > 2, it is important to work backwards from
motoriN in the outer loop to the base motor, motori1 , in
the innermost loop. With the base motor always moving, all
markers on the chain will be moving, and they can thus be
isolated from other chains.

Along with the calibration map, we save a sample frame and
its motor angles; when the user reloads a map, we present
the frame overlayed on the current live video stream so that
the robot can be positioned accurately.

Puppeteering
After the calibration step, or by loading previous calibration
data and aligning the robot, the animator can start animating.

Matching Algorithm
The matching algorithm selects the motor signals that would
create the robot pose currently seen by the webcam. Marker
locations are captured by the webcam and matched against
entries in the calibration map. A chain can have many cal-
ibration poses with similar marker sets; our matching func-
tion will choose between them by checking for continuity
with previously computed angles. Thus, we track the robot
throughout a user’s session, whether or not the data is be-
ing recorded. We initialize the matching algorithm with the
angles from the sample calibration frame.

In our matching algorithm we look at each motor chain in-
dependently. For each chaini, we run through all entries in
calibi. The entry we are seeking will be an accurate sub-
set of the markers (moving or not) in the current camera
frame. A distance function uses this metric, looping over
each marker (xck, y

c
k, r

c
k) in the calibration entry and adding

the distance to the nearest marker in the camera frame (from
the set {(xk, yk, rk)}). By matching from the calibration set
to the current frame, spurious markers in the background,
and markers in other chains, do not hinder matching.

When calculating the distance function, we penalize motor
jumps greater than 10 percent. This enforcement of motor
continuity is key to our being able to use indistinguishable
circular markers. For example, the cookie jar looking 90
degrees right with a marker on the left side of its lid, and
looking straight with a marker in front center of its lid, both
present identical (xk, yk, rk) marker locations; however, the
penalty ensures only the pose closest to the previously com-
puted one is chosen.

Figure 4. The interface showing a puppeteered animation.

Graphical User Interface
Our GUI, shown in Figure 4, presents a timeline with au-
dio visualization and motor graphs along the bottom of the
screen, and button controls in the upper left. A live view
of the camera is in the upper right. The view is overlayed
with the calibration data and a realtime view of the match-
ing results (white lines between detected markers and the
calibration markers that matched to them).

We support two Mirror Puppeteering techniques in the GUI:
continuous puppeteering and tracked keyframing. During
continuous puppeteering, the robot’s movements are recorded
in realtime with the timeline playhead advancing continu-
ously. The animator toggles motors back and forth between
“record” and “playback” mode. When the animator hits “play”
to puppeteer the robot, motors set to “record” will contin-
uously record, and motors set to “playback” will move of
their own accord. Thus the animator can layer animation,
animating one limb, and subsequently replaying the motion
at the same time he is animating another limb. In tracked
keyframing, the software tracks the robot as the animator
moves it; but only discrete poses are recorded. The anima-
tor moves the playhead to a given position, poses the robot,
and clicks “add keyframe” to add the pose to the graph. For
the purpose of evaluating our system with respect to tradi-
tional methods (see below), we also include an option for
traditional keyframing, where no tracking is used and the
animator clicks on graphs representing each limb’s position
to create, delete, and adjust keypoints.

Playback and Beyond
Playback can be done away from the camera; at this point,
the systems knows all the motor positions in the animation.
Markers are usually part of the robot’s “costume”, but if tem-
porary markers were attached to the robot, they can be re-
moved at this stage.

The “mirror” we have created produces a fairly generic map-
ping: markers visible in the camera to motor positions. Mir-
ror Puppeteering thus has capabilities in addition to the record-
ing and playback of a single robot.

Without any modification, our system supports realtime show
control. A user with two physically identical robots can pup-
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Figure 5. Our prototypes consist of a robot made up of servos, a
microcontroller with a circuit board, and a laptop with a webcam.

peteer one robot “behind the curtain” while simultaneously
playing back the animation on the second robot; we show
this technique in the accompanying video using the clock
robots. The control robot can also be a smaller proxy of a
larger animated robot on stage. Our software can also func-
tion as a more general motion capture tool. For example,
after calibrating the cookie jar robot’s arm, one could attach
a marker to one’s own hand, and animate the robot by wav-
ing one’s hand along a similar path.

Finally, an animator can use the system to drive a virtual
character by puppeteering a physical robot. Our software
streams out motor angles simultaneously to USB and to a
named pipe, allowing both custom hardware and animation
software to link easily into our system.

Hardware Prototype
Mirror Puppeteering works on any robot with position con-
trolled actuators which can be back-driven when switched
off. In our prototypes, we tested the system on My Keepon,
a toy robot with DC gear motors, and several robots we built
ourselves, actuated with hobby servos.

In our prototyping setup for homemade servo robots, the
robot’s custom calibration routine is loaded on the Arduino
microcontroller acting as the robot’s firmware. The circuit
board attached to the microcontroller cuts/gives power to
the servos to switch them between “record” and “playback”
modes (Figure 5). We build two development boards. The
manual board contains flip switches to control power to each
servo individually. The automatic board contains relays which
are controlled by our software “record” and “play” toggles.

The Arduino and computer communicate over USB. Dur-
ing calibration, the Arduino streams the current motor angles
to the computer. During animation playback, the computer
sends power control signals and motor angles in realtime to
the Arduino and the Arduino moves the motors.

EVALUATION
We evaluated our system using the 4-DoF cookie jar robot
shown throughout this paper. We measured the system’s
accuracy by comparing original motor positions to recon-
structed motor positions for several motion trajectories. We
measured user experience in a user study comparing con-
tinuous puppeteering, tracked keyframing, and traditional
keyframing.

Accuracy
To evaluate the accuracy of our system we took puppeteered
dance animations from participants in the study described
below, and played them back on the robot. Simultaneously,
we used our matching algorithm to reconstruct the motor po-
sitions.

We measured the mean error in degrees for each motor over
three 15-second animations, sampled at 1000Hz. Mean er-
rors were 3.2° for the left arm, 3.0° for the right arm, 2.7° for
the head pan, and 3.1° for the head tilt. Fast movements were
the greatest source of error, as they create motion blur which
can cause tracking failure.

User Study
To evaluate the usability of our system as compared to tradi-
tional robot animation, we ran a user study comparing three
methods: continuous puppeteering, tracked keyframing, and
traditional keyframing. Participants used the cookie jar robot
in a preset configuration setup, simulating the use-case of a
novice user animating a commercial robot.

Participants were given fifteen seconds of a piece of dance
music, and asked to design a dance for the robot. The dance
could be on-beat or off-beat, detailed or not. For each of the
three methods, used in randomized order, the experimenter
explained the method, the participant worked on a dance
“until they were satisfied” (usually around 10 minutes), and
then the participant completed a survey.

The survey contained four Likert scales, each the mean of
two items: quality of results (“I was satisfied with the quality
of the animation I created.”, “The result of this method was
close to what I originally had in mind.”); enjoyment (“I had
fun animating using this method.”,“This method was annoy-
ing to use (reversed scale).”); usability (“I could easily get
the robot to move like I wanted it to.”,“I found this method
inefficient (reversed scale).”); and learning curve (“I under-
stood how to use this method easily.”,“I became productive
quickly using this method.”). These correspond to our de-
sign goals. Each item was rated from 0 (strongly disagree)
to 7 (strongly agree). At the end of the survey were two op-
tional open-ended questions asking the participant to write
one good and one bad thing about the method.

Eighteen participants, 11 male, 10 female (3 participants
were pairs), ages 10 to 39, participated in the study. Four
had experience with an animation software such as Maya,
but none were expert animators. All participants seemed
entertained by the experience of programming a robot, no
matter which method.

Results
From subjective observation, we note that each of the three
methods requires a different mental approach to animating;
the experimenter observed that participants would often “get”
one method most intuitively.

We found support for this observation in the participants’
open question remarks. Most participants used the word
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mean (std dev)
continuous tracked traditional

puppeteering keyframing keyframing
Results 5.7 (1.3) 5.2 (1.1) 4.3 (1.9)

Enjoyability 6.4 (0.9) 5.6 (1.5) 4.0 (2.0)
Usability 5.6 (1.4) 5.1 (1.3) 4.2 (1.7)

Learning Curve 6.2 (1.1) 5.4 (1.2) 5.2 (1.5)

Table 1. Participants rated continuous puppeteering and traditional
keyframing significantly different along all four scales (bold). Tracked
keyframing was significantly different (italics) only in “enjoyability”
against traditional keyframing.

“fun” to describe the puppeteering interface; but while some
found it “easy to use” and “more interactive”, and one liked
the “unmediated feel to the animation process”, several oth-
ers complained that it required too much coordination. Some
found that tracked keyframing, “allows you to easily stay on
beat” and “be more exact”, but others had trouble with the
thinking process, because “you need to remember what you
already made the robot do in order to make a good dance.
You have to focus, which makes it more difficult”, and “you
don’t really know how it will all come together”. When us-
ing the traditional keyframing interface, some participants
happily created an interesting curve on the graph, and ex-
tensively fine-tuned it, with little regard for what it would
actually look like on the robot; others focused intensely on
mentally mapping locations on a motor graph to correspond-
ing motor angles. The traditional keyframing interface was
thus both “straightforward and pretty simple” and “quicker”,
as well as “far less intuitive” and “exhausting”.

Likert Scales
Table 1 shows the results of the four Likert scale measures.
One-way ANOVA revealed significant differences between
groups in all four scales: scale Results, F (2, 51) = 3.97, p <
.05; Enjoyment, F (2, 51) = 12.36, p < .001; Usability,
F (2, 51) = 4.03, p < .05; and Learning Curve, F (2, 51) =
3.68, p < .05. Post-hoc Bonferroni-corrected pairwise com-
parisons revealed that puppeteering was significantly differ-
ent from traditional keyframing on all four metrics (p <
.05). Tracked keyframing was significantly different only in
the “enjoyment” scale, compared with traditional keyfram-
ing (p < .05).

LIMITATIONS
The primary limitation of our algorithm, which restricts us
to low-DoF robots, is that the number of combinations of
angles in the calibration sequence must be tractable. As each
motor chain is calibrated independently, the robot can have
a large number of limbs, but to be computationally feasible,
each limb must be restricted to two degrees of freedom. A
limb can have more degrees of freedom if each motor covers
a small range. For example, in the accompanying video we
add ears to the lid of the cookie jar robot, creating three DoF
chains; however, we restrict the range of the ears to three
discrete positions (left-middle-right).

Robots must have a stationary base. While this does not
make our system appropriate for mobile robots, in practice,

many of the expressive robots designed in the last decade
do actually have a stationary base. Some examples include
MIT’s Leonardo and AUR; iCat; Jibo; Georgia Tech’s Travis
and Shimon; Keepon; and Karotz.

Very fast puppeteering can cause markers to motion blur in
the camera frame. We overcome the ambiguity among simi-
lar marker sets in calibration entries by looking for temporal
motor angle continuity. However, if—for example—-we ro-
tate the cookie jar head too rapidly from left to right, causing
motion blur during the transition, our tracking algorithm will
fail, as both sides look similar. We can alleviate this problem
by offsetting the markers so they do not end up in identical
camera frame locations. Note in Figure 1 that the center
marker on the cookie jar’s head is raised relative to the side
markers. Future work could include additional disambigua-
tion cues such as marker color.

Robots must be designed so that one limb cannot fully oc-
clude all the markers in another limb. A possible solution
in case of occlusion is to place the markers on an extension
for calibration and puppeteering. In the snakes robot in Fig-
ure 1, for example, the front snakes fully occlude the rear
snakes; we added antennae to hold the rear markers.

The relationship between the camera and the 3D marker move-
ment affects the precision of tracking. Marker movements
that are co-planar or near co-planar to the image plane are
most readily tracked. Movements which are largely towards
or away from the camera are not as easily distinguished, but
this limitation is ameliorated by factoring in the radius of the
markers. Naturally, the higher the resolution of the camera,
the less sensitive the system is to this issue.

The robot must be in precisely the same camera alignment
during calibration and animation. In practice we found it
often faster to take the role of the “advanced user” and let
the robot run self-calibration whenever placing it in front of
the camera.

CONCLUSION AND FUTURE WORK
This paper presented Mirror Puppeteering, a direct puppeteer-
ing system that enables lay users to create expressive anima-
tions on toy robots. Robots in this class tend to be small and
structurally simple, an ideal opportunity for a vision-based
system. We use markers on the robot, which can be embed-
ded in the robot’s design, and track these markers to recover
motor positions. Our system is agnostic to the 3D structure
of the robot, allowing new robots to quickly use the software
as-is. This makes our system a candidate to be web-deployed
and generic enough for a large number of toys.

Mirror Puppeteering can also be used to control robots in
realtime, control virtual characters, and record animations
for them. In this paper and the accompanying video, we
demonstrate these possibilities on a range of small robots
and virtual characters.

Our user study showed that puppeteering at this scale is un-
derstandable by the naive user, useful, and, moreover, enjoy-
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able. Although the optimality of continuous recording ver-
sus poses is task dependent [1], participants’ preferences in
even our single task were divided among all three methods,
encouraging their inclusion in future puppeteering systems.
Moreover, several participants suggested that the ideal an-
imation software would be a combination of puppeteering
and traditional keyframing: puppeteering to lay down the
rough animation, and keyframing to fine-tune it. This work-
flow is possible in our current software, although it would
be tedious to adjust each point in the dense curves created
by puppeteering. An intuitive way to modify these curves at
different scales would be a useful addition to our software.

Future work could make the system simpler still, eliminat-
ing the need for even the robot’s firmware to know its joint
hierarchy and motor limits in advance. Similar to the self-
calibration step, the robot could look at itself in the mirror,
tracking marker locations, to figure out what its structure and
limits are.

Given the increasing popularity of both toy robotics and am-
ateur 3D animation, the fact that Mirror Puppeteering is specif-
ically designed for consumer-grade webcams and low-cost
motors, and is designed to work easily out of the box, makes
this a promising candidate for real-world usage of puppeteer-
ing as a home animation technique. Novices can thus use
both hands, and the richness and fluency of their embodied
motion, to bring their robots and 3D characters to life.
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