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Abstract—In a controlled experiment, participants (n = 60)
competed in a monotonous task with an autonomous robot for
real monetary incentives. For each participant, we manipulated
the robot’s performance and the monetary incentive level across
ten rounds. In each round, a participant’s performance compared
to the robot’s would affect their odds in a lottery for the monetary
prize. Standard economic theory predicts that people’s effort will
increase with prize value. Furthermore, recent work in behavioral
economics predicts that there will also be a discouragement effect,
with stronger robot performance discouraging human effort, and
that this effect will increase with prize. We were not able to
detect a meaningful effect of monetary prize, but we found
a small discouragement effect, with human effort decreasing
with increased robot performance, significant at the p < 0.005
level. Using per-round subjective indicators, we also found a
positive effect of robot performance on its perceived competence,
a negative effect on the participants’ liking of the robot, and
a negative effect on the participants’ own competence, all at
p < 0.0001. These findings shed light on how people may exert
work effort and perceive robotic competitors in a human-robot
workforce, and could have implications on labor supply decisions
and the design of compensation schemes in the workplace.

Index Terms—Human-Robot Competition; Reference-
Dependent Preferences; Loss Aversion; Perceived Competence

I. INTRODUCTION

In this paper, we present an experiment studying the effort
of people competing for a real monetary prize with a robot,
and how the robot’s performance affects people’s effort and
their attitude toward the robot. People compete with each
other in workplaces, politics, sports, and other contexts, both
for monetary and non-monetary gains. When humans make
decisions on whether and how much to invest in a competitive
task, they can be motivated by several factors. Traditional
economic models of decision-making often focus exclusively
on the direct value of the reward for the task. However,
recent work in behavioral economics highlights additional
considerations, in particular, that the psychological value of
winning a reward can be affected by prior expectations. These
motivations are not just important to the individual, but also
to society at large as they affect labor supply decisions and
the design of compensation schemes in the workplace.

This project was supported in part by the Planning and Budgeting Commit-
tee and the Israel Science Foundation (grant no. 1821/12). The authors thank
David Gill and Matthew Rabin for their helpful comments.

Behavioral economics researchers have found evidence sup-
porting the notion that people are “loss-averse,” i.e., perceive
the disappointment resulting from the loss of a reward more
strongly than the satisfaction resulting from gaining an equiv-
alent reward. These perceived gains and losses, however, are
not objectively determined but rather depend on a subjective
reference point. In a competition, the reference point often
depends on people’s own efforts and that of their competitors.

With robots entering the workforce, and robots along with
other artificial intelligence (AI) agents playing an increasing
part in the economy, we can expect situations where people’s
real economic outcomes depend on a robot’s performance.
Also, people may compete with their robotic co-workers,
e.g., to win resources or to demonstrate capabilities. We are
therefore interested in understanding how people’s effort is
affected by a robot’s performance in a competitive situation.

This work is also motivated by the dearth of Human-
Robot Interaction (HRI) research that focuses on human-robot
competition, especially outside a game environment. Beyond
the study of people’s competitive effort, we are therefore also
interested in understanding human attitudes towards the robot
and towards themselves in competitive settings, and how those
are affected by the robot’s performance.

II. BACKGROUND

A. Human-Robot Competition

A large segment of the HRI literature is concerned with
collaboration between humans and robots, where both agents
share the same goal [1]–[3]. Competitive scenarios, in contrast,
have rarely been explored.

In the AI community, competitive games have served as
a benchmark for a variety of algorithms, including Checkers
[4], Backgammon [5], Chess [6], and more recently, Go [7].
However, the structure of these games was used to illustrate the
learning, reasoning, and planning capacities of the algorithm,
and was not focused on the human’s effort and attitudes in
these competitions. In addition, engaging and complex games
are not good proxies for the rote work-like task competitions
we are concerned with in this work.

HRI research, even in game-playing scenarios, has mostly
looked at collaborative games, where the direct competition
with the robot is not emphasized [8], [9]. There are a few
notable exceptions: Mutlu et al. [10] explored the perceptions
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of an ASIMO robot in competitive and cooperative scenarios,
and found that male participants were more engaged with the
task when competing with the robot but found it less socially
desirable than a cooperative robot. Short et al. [11] studied
how a cheating robot influences attributions of mental state
and intentionality in a human-robot competition, and found
increased engagement and mental state attribution when the
robot cheated as compared to the control condition in which
the robot played fairly. In both cases, the study focused on a
playful game competition. Neither considered a human-robot
competition involving repetitive or mundane tasks for a real
monetary reward. The work presented here thus provides new
insights into a so-far unexplored area of HRI research, namely
a real-effort competition between a human and a robot for
monetary incentives.

B. Expectations-Based Loss Aversion

The main economic theory we are testing in this experiment
is expectations-based reference dependent (EBRD) loss aver-
sion. When making economic decisions, humans have long
been shown to be risk-averse, tending to lower uncertainty
even at the cost of lowering expected payoff (for a recent
review, see [12]). Traditionally, this was associated with a
concave utility function [13], where utility increases at a
diminishing rate. However, more recent work has shown that a
concave utility function cannot plausibly explain both small-
and large-stakes risk aversion [14]. One notable alternative
explanation is loss aversion, in which losses are weighted
more heavily than gains—both defined relative to a reference
point. This creates extra local concavity of the utility function
around the reference point, which, in addition to the traditional
(reference-independent) concavity, can explain both small-
and large-scale risk aversion. The term “loss aversion” was
coined and first presented by Kahneman and Tversky [15],
and became increasingly common among economists.

Within this theoretical framework, EBRD utility models
were developed with a special focus on how the reference point
is determined. These models posit that the reference point
depends on people’s expectations. Notable early EBRD models
include [16]–[18]. More recently Kőszegi and Rabin [19]–[21]
(henceforth KR) developed a more comprehensive version of
an EBRD model, which became popular for economic mod-
eling of loss aversion. The KR model adds to the traditional
model two main features: the first relates to how people react
to departures in their consumption from the reference point,
which can be either a deterministic outcome or a distribution
of outcomes. The second feature is a formation of the reference
point according to a person’s rational expectations.

The model has been experimentally evaluated in a variety
of contexts, including a competition between two people. We
draw much of our experimental design and theoretical predic-
tions from one of these experiments, conducted in 2009 by Gill
and Prowse [22] (henceforth GP). In GP, two people, called
“First Mover” and “Second Mover” completed a computerized
real-effort task sequentially, and the probability of winning a
prize was determined by the effort exerted in the task relative

to the competitor. Consistently with EBRD predictions, GP
found an interacted discouragement effect, in which the Second
Mover’s effort was negatively affected by the First Mover’s
effort, increasingly with prize value (p = 0.04).

Other studies investigating EBRD predictions focused on
labor supply decisions under uncertainty and on people’s
attachment to objects which they expect to possess, also
known as the endowment effect. These studies provide some
supportive evidence, although its generalizability, robustness,
and interpretation are still actively debated and scrutinized (for
recent examples and detailed discussions of earlier work, see,
e.g., [23] and [24]).

Our experiment extends existing empirical evidence in
several ways. First, it includes a simultaneous, rather than
GP’s sequential, competition. Second, it replaces GP’s human-
human competition with a human-robot one. Third, we mea-
sure people’ attitudes towards robots in a competitive situation
where money is at stake. Finally, we have added several design
features in order to make the theoretical predictions robust to
a more general version of the EBRD model [21].

III. COMPETITION DESIGN

We developed a within-subject experimental protocol to
study human-robot interaction in a monotonous competitive
environment. Participants competed with a robot on a repeti-
tive task that involved counting letters and moving a block in
the workspace.1 We manipulated two independent variables:
robot performance and monetary prize level.

A. Letter Counting and Block Placement Task

The participant and the robot each receive a randomly
generated string of 20 characters. They have to count the
number of ‘G’ letters in their texts and place a block in the
corresponding bin. There are either 3, 4 or 5 ‘G’ letters in
the text and three bins marked with ‘3’, ‘4’ and ‘5’ in the
workspace. After placing the block in a bin the participant has
to click a button on the screen to validate their counted number.
Following a correct placement, the participant gets one point
and receives the next string of characters. For an incorrect
placement, they do not receive a point and the submission of
block placement gets disabled for 10 seconds. At that stage,
they can still re-count the letters in the text and move the
block around, but cannot click the button to validate. After 10
seconds, the participant can again submit their block placement
for verification. Each competition round lasts two minutes.
However, the participant does not have to compete for a full
two minutes and can choose to stop working at any time.

B. Prize Scheme

The participant’s chance of winning the prize for each round
depends upon the difference between the robot’s final score
(denoted er for “robot effort”) and participant’s final score
(denoted eh for “human effort”). If the scores are the same,

1All experimental materials, including full instructions, questionnaires,
screen-shots, recruiting materials, video recordings of the setup, and the
resulting data, are available at www.nber.org/~heffetz.
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the participant has a 50% chance of winning the prize. The
probability of winning the prize (p) increases/decreases by 1%
per unit difference in points, as given in Eq.1.

p =
eh − er + 50

100
(1)

If the full two-minute round elapses, eh and er are the actual
number of tasks completed. If a participant chooses to stop the
round early, er will be equal to the robot’s projected score,
which is equivalent to assuming that the robot would have
continued uninterrupted until the end of the two-minute round;
eh will be the participant’s score at the time of stopping. The
projected score is calculated based on the average speed, as
er(final) = er(now)

time(now) × 120.

C. Robot and User Interface

We use an off-the-shelf WidowX Mark II robot arm to
perform the letter counting and block placement task. The
experiment setup is shown in Fig. 1. An Orbbec Astra vi-
sion sensor detects the block position using the cmvision
package [25], which is fed to the motion planner MoveIt!
[26]. Within MoveIt! we use the inverse kinematics solver
trac-IK [27] to generate joint trajectories for the robot arm.
Due to the vision sensor feedback, the robot is able to recover
from failures and picks up the block from its correct position
to place it in the correct bin. We also use the input from the
robot’s vision sensor to verify the human’s block placement
for score-keeping and to trigger the 10-second penalties.

Fig. 1: Experiment Setup

The user interface, as shown in Fig.2, displays the points
accumulated so far (‘Score’), the total points expected at the
end of the two-minute round (‘Projected Final Score’), the
monetary prize for the round, the time left in the round and the
participant’s chance of winning the prize at each instant (‘Your
Chance of Winning the Prize, if You Stop Now’). The screen
also has buttons for starting and stopping the round, and for
submitting the block arrangement for verification (‘Submit’).
Based on pilot studies in which participants noted that they did

not have a sense of their winning odds, the current probability
of winning is additionally read out by a robotic voice every five
seconds. At the end of each round, another screen displays the
final scores and participant’s probability of winning the prize
for that round. Participants use a USB mouse to interact with
the screen. The entire software, including the robot’s motion
controller, computer vision and user interface, is built within
the Robot Operating System framework (ROS) [28].

Fig. 2: User Interface Screen

D. Lottery

The winner of each round is decided in a lottery based on
the percentage chance of winning at the end of the round.
We use a public website for this purpose.2 For each paying
round, we roll a fair 100-sided die on that website. If the die-
roll result is less than or equal to the participant’s chance of
winning the prize, the participant wins the prize for that round.

IV. THEORETICAL PREDICTIONS

Our basic theoretical predictions are identical to GP’s. We
present a brief, intuitive derivation. For the full mathematical
derivation of the predictions, see GP [22].

According to economic theory, a human’s choices maximize
a utility function. In our context, the utility is a function of
the human’s effort, eh. Traditional models of labor supply
highlight two utility terms. The first, −C(eh), is an increasing
cost function of effort. The second is the expected payoff,
which we can model in our scenario as pv, with p the
probability of winning (Eq. 1), and v the size of the prize. KR’s
EBRD model includes two additional terms that represent
expected gains and losses. With probability p, the human gets
the prize v and experiences a gain relative to the potential
outcome of not winning the prize; the gain equals (1 − p)v.
With probability 1−p the human gets nothing and experiences
a loss relative to the potential outcome of winning the prize;
the loss equals −λpv. The weighting of a loss relative to a
gain by λ > 1 formalizes loss-aversion. The resulting utility
function is the following:

U(eh) = −C(eh) + pv + p(1 − p)v − (1 − p)λpv. (2)

2http://www.roll-dice-online.com/
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Therefore, standard economic theory, without reference de-
pendence, predicts no impact of the robot’s projected score
on the human’s chosen score. The maximization of only
the first two terms means that the human simply wants to
maximize their expected payoff without exerting too much
effort. However, the optimal effort level in EBRD utility does
depend on er; specifically, it decreases in er. To see why,
notice that the last two terms constitute a quadratic function of
p and an increasing linear function of v. The quadratic function
is U-shaped since losses loom larger than gains (λ > 1). This
means that an additional utility ∆U from a small addition to
the human’s effort ∆eh is worth less when the base probability
p is smaller, i.e., when the robot’s projected score is higher.
Therefore, such EBRD models predict that a higher robot’s
projected score lowers the human’s performance. Following
past work, we refer to this as a ‘discouragement effect’. The
magnitude of this effect should increase with the size of the
prize (v). For formal proofs see GP [22].

V. RESEARCH QUESTIONS AND HYPOTHESES

We were interested to know whether and to what extent
a competing robot’s performance and the monetary prize of
the competition change the effort exerted by a human on a
real-effort task. We followed GP and the derivation above to
formulate the following hypotheses:
• H1a — The human’s effort will increase with prize value.
• H1b — The human’s effort will decrease with robot effort.
• H1c — The discouragement effect in H1b will increase

with prize value.
H1a is a trivial result of increasing utility from money—a

fundamental assumption in economic theory. It is therefore
predicted by all economic models, traditional as well as
EBRD. H1b is uniquely predicted by EBRD models. It was
motivated in the previous section; it is formally proved with
a weak inequality in GP Proposition 2. H1c is a special case
of H1b. It is a direct result of H1a, H1b, additional technical
regularity conditions, and a quadratic approximation of the
effort cost function—as proved in GP Proposition 3. The
intuition behind H1c is that the discouragement effect (H1b)
is predicted only to the extent that subjects are motivated to
win the prize (H1a).

In addition to participants’ economic behavior, we were also
interested to know whether and to what extent the robot’s
performance would affect participants’ attitudes toward the
robot and toward themselves. We trivially believed that people
would consider a robot more competent the better it performed
(H2a). We also thought that the robot’s performance would
affect their liking of the robot, although we did not have a
directed hypothesis on whether people would like a better-
performing robot more or less (H2b). Based on the anecdotal
evidence found in several other works, e.g., [10], [29], we
also hypothesized that people will be more self-critical when
interacting with a better-performing robot (H2c). Our second
set of hypotheses is thus:
• H2a — The human’s rating of the robot’s competence will

increase with robot effort.

• H2b — The human’s liking of the robot will be affected
by robot effort (two-tailed).

• H2c — The human’s rating of their own competence will
decrease with robot effort.

Finally, we were interested to explore whether and how
individual differences affect these outcomes. We did not have
directional hypotheses, but measured the following individual
traits in order to analyze their interaction with the above
behaviors and attitudes:
• Money Belief — One’s attitude towards money.
• Self-Efficacy — One’s belief in their ability to succeed.
• Competitiveness — One’s tendency to be competitive.

VI. METHOD

A. Procedure

Participants sat in front of the screen, facing the competitor
robot. After signing the written consent form, they read the
printed instructions. They then answered a comprehension
quiz, designed to test their understanding of the prize scheme,
participated in a demonstration of the lottery resolution pro-
cedure, and competed in a practice round to familiarize them-
selves with the task. Then the experimenter left the room and
the main part of the experiment began. Participants completed
10 competition rounds. After each round, they filled a short
questionnaire about these three points:

1) Robot Competence: “Please rate how much you consider
the robot to be competent on the following scale:” (1–5)

2) Robot Likability: “Please rate how much you like the
robot on the following scale:” (1–5)

3) Self Competence: “Please rate how true the following
sentence is for you with respect to this task: I feel
confident in my ability to do this word-counting task
well.” (1–7).3

We collected no additional questionnaire data per round
beyond these three single item scales. The prizes for rounds
were randomly drawn from [$0.1, $0.2,...,$3.8]. This prize
range was inspired by GP’s, albeit in their case it was in
UK pounds rather than in US dollars. The robot’s speed
was randomly chosen to correspond to a final robot score of
one of [5,...,45] and was kept constant throughout the round.
However, due to inaccuracies in the robot’s motion planner,
we ended up with a small fraction (2.24%) lower than 5
and another 0.45% at 46. At the end of 10 rounds, partici-
pants completed validated questionnaires on self-efficacy [32],
money-belief [33], competitiveness [34]. Also, participants
were asked to give written responses to these two questions:

• Please write a few sentences about your experience of
competing with this robot.

• Finally, if you have any comments or thoughts you would
like to share with us, please write them here. We are
especially curious to know: how did you decide in each
round how strongly to compete?

3We followed the Godspeed questionnaire [30], from which we adapted
Q1&2, using a 5-point scale, and the Self Competence questionnaire [31],
from which we adapted Q3, using a 7-point scale.
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TABLE I: Summary of Robot and Human Efforts

Round Mean R SD R Mean H SD H Min R Min H Max R Max H Mean Inc SD Inc Min Inc Max Inc
Practice 23.97 1.72 15.78 5.30 14 0 26 24 1.93 1.27 0 6

1 24.93 14.33 19.67 3.73 3 11 45 27 2.15 1.44 0 6
2 26.10 15.13 20.18 4.65 5 8 46 33 2.18 1.30 0 5
3 24.52 15.60 19.77 4.37 1 11 46 31 2.45 1.50 0 6
4 25.35 13.75 19.75 6.02 5 0 44 31 2.27 1.44 0 6
5 22.97 14.84 20.15 5.38 4 0 45 32 2.37 1.31 0 6
6 22.32 14.51 19.98 7.13 4 0 45 34 2.43 1.39 0 6
7 23.40 14.98 20.72 6.70 3 0 45 33 2.12 1.63 0 7
8 25.85 15.09 20.63 7.50 3 0 46 35 2.27 1.33 0 5
9 26.62 14.90 21.42 5.55 3 5 45 31 2.10 1.42 0 5

10 22.07 15.19 21.97 6.87 5 0 45 32 2.25 1.46 0 6
SD denotes Standard Deviation, Min denotes Minimum, Max denotes Maximum, R and H denote, respectively, Robot and Human Scores,
and Inc denotes the human’s incorrect attempts.

We collected no questionnaire data per participant other than
the questionnaires mentioned above and basic demographic
information.

B. Participants

A total of 61 participants completed the study. Participants
were recruited from an online pool of students. The invitation
text described the experiment as “making decisions in the pres-
ence of a robotic arm”, but did not mention a competition or
prize money, only that “participants will receive $10 for their
time”. There was an error in the data logging system for one of
the participants. Therefore, we do not include this participant
in the data analysis. The valid set of 60 participants consisted
of 43 females, 16 males and one participant of unspecified
gender. One participant did not fill out the questionnaire after
one of the rounds. We include this participant’s responses for
other rounds in the data analysis. We thus have n = 600
observations for most analyses, and n = 599 for the ones
involving the per-round self-report scales.

Each study session lasted about 45 minutes. The participants
received $10 as the show-up fee and any additional amount
won in the competition. The average payment was $18.89,
including the $10 show-up fee.

VII. RESULTS

In response to the recent reproducibility crisis [35], and as
part of an effort for more reproducible studies in HRI, we
consider the p-value threshold for statistical significance in all
of our results to be 0.005 instead of the more commonly used
value of 0.05, as suggested by [36]. We therefore also use
confidence intervals of 99.5% instead of 95% in our graphs.
Furthermore, we will generally attempt to minimize using the
term “significant,” and instead report p-values directly. Finally,
to err on the conservative side of our conclusions and to make
our results easier to parse, we use two-tailed p-values even
when we have directional hypotheses.

A. Summary of Behavior

Table I summarizes robot and human performance. We see
a considerable variation in the participants’ scores, ranging
from 0 to 35. Overall, excluding the practice round, mean
human score (20.42) is lower than mean robot score (24.41),
and increases from 19.67 in the first round to 21.97 in the tenth

round. The number of incorrect submissions per participant in
a round ranged from 0 to 7; on average, in each round humans
had two to three incorrect submissions.

B. Effect of Prize and Robot Effort on Human Effort

To test hypotheses H1a–c, we ran a fixed-effects multivari-
ate regression controlling for round number and participant
ID. Table II, which is a fixed-effects version of GP Table 2,
reports our main-coefficient estimates. H1a and H1b predict
the estimated average effect of prize and robot score to be
positive and negative, respectively. H1c (a special case of
H1b) predicts a negative estimate of the interaction term Robot
Score × Prize.

TABLE II: Effects of Prize and Robot Effort on Human

Variable Estimate Std. Error t-Ratio p-Value
Prize 0.242 0.334 0.73 0.468

Robot Score −0.049 0.028 −1.75 0.080
Robot Score × Prize 0.003 0.012 0.24 0.814

(n = 600)

As Table II shows, H1c is not supported: the interaction
coefficient is small, positive, and not statistically significant
(p = 0.814; an F -test reveals that jointly, the three co-
efficients are significant, p = 0.005). Evaluating H1a and
H1b, which concern average effects in Table II’s interacted
(and hence, nonlinear) specification, is less straightforward
and requires additional calculations.4 However, because the
interaction coefficient’s estimate is close to zero, and for ease
of presentation, we instead proceed by assuming it to be
exactly zero, and estimate a non-interacted specification that
replicates Table II but drops the interaction term. In this non-
interacted specification, reported in Table III, H1a and H1b
are directly testable by looking at the estimated coefficients
on Prize and Robot Score.

Table III shows that while H1a is not meaningfully sup-
ported (p = 0.073), H1b is supported (p = 0.002). Thus,

4Evaluating H1a and H1b from the interacted specification in Table II can
be done using the Delta method for estimating the local effects of Prize and of
Robot Score at different values, including the effects at the average, and the
average effects. We found this analysis to yield almost identical coefficients as
the more straightforward method that follows in the text, and thus to support
the same conclusions. This is not surprising given that the interaction term is
close to zero.
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TABLE III: Average Effects of Prize and Robot Effort

Variable Estimate Std. Error t-Ratio p-Value
Prize 0.310 0.172 1.80 0.073

Robot Score −0.043 0.014 −3.11 0.002
(n = 600)

while we find no statistically detectable reaction of human
effort to monetary prize—and therefore no detectable support
for a fundamental assumption of any economic model—we
find that increasing the robot’s score discourages the human
from performing better at the task. To illustrate the size of
the estimated effect: increasing the robot’s score from 5 to 45
decreases the human’s score by an average of 1.72, that is,
by 8.4% relative to the average baseline. For comparison, the
insignificant coefficient on Prize associates a prize increase
from $0.1 to $3.8 with a human-score increase of 1.15. Of
course, while we cannot reject a zero effect of the monetary
prize, by the same token, and with the same p-value (p =
0.073), we also cannot reject an effect that is twice our
point estimate, namely, 0.620—which would associate a prize
increase from $0.1 to $3.8 with a human-score increase of
2.30. Note that for the EBRD model considered in GP and
in Section IV above to accommodate H1b without H1a and
H1c, participants have to care about winning each round’s
lottery regardless of its prize amount. Formally, v would be
replaced by a constant v∗ that represents the value of winning
the lottery, and is unaffected by the monetary prize. We return
to this point in the Discussion (Section VIII).5

C. Effect of Robot Effort on Human Attitudes

We used the data gathered from the three single-item
scales asked after every round, as described in Section VI-A,
to measure the effect of the robot’s performance on robot
competence, robot likability and the human’s self competence.

To test H2a–c, we ran three fixed-effects regressions with
the same specification, namely with robot score and prize as
predictors, controlled for participant ID and round number.

• Table IV shows the regression estimates for robot compe-
tence. Robot score positively predicted the robot’s com-
petence (β = 0.039, p < 0.0001). Figure 3a illustrates
the variation in mean robot competence with robot score.

• Similarly, Table V shows that robot score negatively pre-
dicted the robot’s likability, β = −0.016, p < 0.0001).
Figure 3b illustrates the variation in robot likability.

• Finally, Table VI shows that robot score negatively pre-
dicted the human’s self competence (β = −0.023, p <
0.0001). Figure 3c illustrates the relevant variation.

5GP found some support for all three hypotheses (see their Table 2 and
its discussion), and therefore for the EBRD model they consider. Specifically,
in either a fixed- or random-effects specification, they estimated a negative
interaction coefficient (β = −0.049 and −0.051, p = 0.030 and 0.037,
respectively). Reproducing our Table III from their publicly available data,
we estimate an average discouragement effect of the First Mover’s on the
Second Mover’s effort (β = −0.045, p = 0.089) and an average prize-
amount effect (β = 0.44, p = 0.004). While the two experiments are not
directly comparable (e.g., the tasks and other design details are different), we
note that GP’s average discouragement effect is almost identical to ours.

TABLE IV: Effect of Robot Score on Robot Competence

Variable Estimate Std. Error t-Ratio p-Value
Robot Score 0.039 0.002 17.91 < 0.0001

Prize 0.037 0.027 1.35 0.176
(n = 599)

TABLE V: Effect of Robot Score on Robot Likability

Variable Estimate Std. Error t-Ratio p-Value
Robot Score −0.016 0.002 −7.74 < 0.0001

Prize −0.023 0.026 −0.89 0.375
(n = 599)

D. Individual Differences

We analyzed the data obtained from questionnaires measur-
ing participants’ self-reported self-efficacy [32], money-belief
[33] and competitiveness [34], to study whether individual
differences directly affected the performance or subjective
measures, or interacted with our main hypotheses.

We did not have specific a-priori directional hypotheses,
but tested the collected data along the following questions:
Would people who value money as more important be more
affected by the reward? How does their money belief affect
their performance overall? Do people who had a higher belief
in their ability to succeed (self-efficacy) feel better about their
performance? How does this relate to the robot’s performance?
Do more competitive people exert a higher effort when the
robot’s performance increases? The last one was interesting
since GP tested effort in a sequential competition, whereas our
experimental paradigm included a simultaneous competition.
People’s tendency toward competitiveness could counteract the
economic discouragement effect.

To evaluate these questions, we ran the following fixed-
effects multivariate regressions:6

• Human effort as a function of money belief, prize, and their
interaction, controlling for robot score and round number.
Table VII shows the regression estimates. Money belief
positively (suggestively) predicted the human’s score (β =
0.652, p = 0.007), while the interaction between money
belief and prize did not.

6In all of these regressions, the variables in the interaction terms were
centered around their means.

TABLE VI: Effect of Robot Score on Self Competence

Variable Estimate Std. Error t-Ratio p-Value
Robot Score −0.023 0.002 −10.05 < 0.0001

Prize −0.038 0.028 −1.33 0.1846
(n = 599)

TABLE VII: Effect of Money Belief on Human Effort

Variable Estimate Std. Error t-Ratio p-Value
Money Belief 0.652 0.240 2.71 0.007

Prize 0.357 0.209 1.71 0.088
Money Belief × Prize −0.135 0.205 −0.65 0.513

(n = 600)
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(c) Self Competence vs Robot Score

Fig. 3: Effect of the robot’s performance on human attitudes. (Each error bar is constructed using 1 standard error from the
mean. The confidence interval for the fitted line is 99.5%. n = 599.)

• Self competence as a function of self-efficacy, robot score,
and their interaction, controlling for prize and round num-
ber. As Table VIII shows, self-efficacy positively predicted
the human’s self competence (β = 0.429, p = 0.002),
while the interaction between self-efficacy and robot score
did not strongly predict it.

TABLE VIII: Effect of Self-efficacy on Self Competence

Variable Estimate Std. Error t-Ratio p-Value
Self-efficacy 0.429 0.136 3.16 0.002
Robot Score −0.026 0.003 −7.65 < 0.0001

Self-eff. × Robot Sc. 0.018 0.009 1.92 0.055
(n = 599)

• Human effort as a function of competitiveness, robot
score, and their interaction, controlling for prize and round
number. As Table IX shows, neither competitiveness nor its
interaction with robot score predicted the human’s score.

TABLE IX: Effect of Competitiveness on Human Effort

Variable Estimate Std. Error t-Ratio p-Value
Competitiveness 0.299 0.199 1.50 0.134

Robot Score −0.027 0.016 −1.62 0.106
Compet. × Robot Sc. −0.015 0.013 −1.14 0.254

(n = 600)

E. Open-ended Responses

In their post-experiment responses, participants gave mixed
feedback about their experience. Some said that they liked
competing with the robot, while others said that it was stressful
and frustrating:

P014: “It was an interesting task, I’ve never com-
peted with a robot before. It was fun.”
P048: “I felt very stressed competing with the robot.
In some rounds, I kept seeing the robot’s score
increasing out of the corner of my eye, which was
extremely nerve-racking [sic].”

Some reported that the prize and the robot’s score affected
how strongly they competed, while others reported that they
chose to compete strongly in all the rounds, without regard
for the speed of the robot or the prize. For most participants

who reported that they were affected by the robot, they noted
that they competed stronger when the robot was slower, as
predicted by the theory:

P035: “[In] some rounds the robot would go slower
and that’s when I started going faster.”
P055: “Usually, if I saw a high expected point value,
I worked less hard as my efforts would have less gain
than a competition with a lower expected point value
of the robot.”
P011: “I skipped rounds that were either too low in
payout or too high in difficulty.”

Although in a minority of cases, the motivation was re-
versed:

P031: “When I had the lowest chance of winning, I
tried my hardest to get it up.”

We found very little occurrences of anthropomorphizing the
robot, such as:

P064: “It was obvious when the robot was ’going
easy’ on me.”

Most participants viewed the robot as a machine at best, or
merely as a score to beat:

P011: “I actually did not really view this as compe-
tition with a robot, since the robot’s predicted score
was shown at the beginning of the round. I viewed
it more as a challenge to myself to get as close to
that number as possible.”
P067: “I sort of realized, I am just competing with
an idea of mechanization, and the arm is just a prop
to signify it. In reality, it’s just a counter going up
at a steady rate.”

Finally, a few of the participants complained about the
robotic voice that read out the probability of winning every
five seconds and noted that it was distracting.

F. Other Anecdotal Results

Further data analysis revealed some anecdotal results which
could be grounds for future research. We ran a fixed-effects
linear regression of the human’s score as a function of self-
efficacy, controlled for round number, prize, and robot score.
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Self-efficacy negatively predicted the human’s score, (β =
−2.396, Std. Error = 0.649, t-Ratio = −3.69, p = 0.0002).

We had also recorded the number of mistakes made by
participants in each round. We ran a fixed-effects regression
for incorrect attempts as a function of robot score and prize,
controlled for participant ID and round number. The regres-
sion results are shown in Table X. We see that there is no
statistically significant effect of the robot’s score or the prize
on the number of mistakes made by the participants.

TABLE X: Effect of Prize and Robot Effort on # Errors

Variable Estimate Std. Error t-Ratio p-Value
Robot Score 0.006 0.003 1.72 0.086

Prize 0.039 0.044 0.90 0.371
(n = 600)

VIII. DISCUSSION

From an economic-theory point of view, our failure to find
meaningful support for H1a—the prediction of a positive
effect of prize amount on human effort—is rather puzzling. To
accommodate it within a rational theory of decision-making,
people would have to be willing to exert effort competing with
the robot mostly for non-monetary reasons. Ex-ante, we did
not expect such behavior. Ex-post, we could think of several
potential explanations unique to our setup.

First, our experimental design itself might have caused par-
ticipants to pay more attention to the probabilities of winning
the prize than to the monetary amounts. Recall that in our
experiment, a robotic voice read out loud, every five seconds,
the updated probability of winning. This feature did not exist
in any previous experiment we are aware of. Its purpose
was to make sure that participants kept paying attention,
while competing, to their dynamically changing probability
of winning. But this may have caused participants to pay less
attention to the monetary prize. Additional support for this
possibility was mentioned in Section VII: A few participants
complained about this feature and noted that it was distracting.

Another related important factor, and the primary difference
between previous real-effort experiments and our experiment
was the nature of the competition. To the best of our knowl-
edge, this was the first experiment in which humans competed
against a robot for a monetary prize, and where both the
competitors worked simultaneously on the same task. Seeing a
robot compete side-by-side may have motivated participants to
focus on the competition and the chance of winning, without
bothering about the monetary rewards. These explanations
could be tested in future work.

Beyond this economic puzzle, we found a discouragement
effect (H1b), that is similar to the average effect found by
GP in human-human competition. We also found interesting
related effects of the robot’s performance on the participants’
attitudes towards the robot and towards themselves. First,
participants did not like a faster competitor robot as compared
to a slower one even though they found the faster robot to
be more competent. This may support an intuition that people
like a weaker competitor, even if it is a robot.

Second, in line with H2c, participants’ perception about
their own ability to do this task was also negatively affected
by the robot’s performance—even though there was no direct
interaction between the human tasks and that of the robot’s.
People perceived themselves as more competent when the
robot was slower and as less competent when the competitor
robot was faster. This may suggest that people assess their abil-
ity to perform a task relative to that of their competitor, even
if it is a robot. Remarkably, this effect is present across rounds
within subjects, in spite of the task itself never changing, with
the only difference between rounds being the robot speed. This
effect is not mainly driven by their lower score resulting from
the above discouragement effect: Including the human’s score
as an additional explanatory variable in Table VI does not
change the estimated effect of robot score on self competence
more than trivially (it changes from −0.023 to −0.021;
standard error remains 0.002). In other words, people’s self
competence ratings were negatively associated with the robot’s
performance even when controlling for their own performance
(which was itself affected by that of the robot). As a side-note,
while participants’ overall self-efficacy significantly predicted
their self-competence rating (β = 0.429, p = 0.002), this did
not interact with the robot’s score.

Finally, we assumed throughout that the human’s score in
each round represented their actual effort on the task. However,
in our experimental design, it was possible for the participants
to commit mistakes, which might have affected their scores.
We did not find any statistically significant relation between
the robot’s score or the prize and the incorrect attempts made
by participants. Thus, we maintain the working assumption
that the human’s score in each round is a reasonable measure
of their actual effort on the task.

IX. CONCLUSION

To the best of our knowledge, this is the first experi-
ment in which people competed with a robot, both working
simultaneously on repetitive tasks for a monetary reward.
We observed a small discouragement effect of the robot’s
performance on the human’s performance. But we did not
find a statistically significant effect of monetary reward on the
human’s performance. The latter is not easy to accommodate
within any generally useful economics model. That said, an
EBRD model where individuals value winning lotteries rather
than the monetary prizes they deliver, appears consistent with
our results of a discouragement effect with no money effect.
While unique features of our experimental setup, such as the
built-in salience of probabilities versus prize amounts, may
make such a model easier to digest, it is unlikely to be usefully
portable to more than a handful of other situations.

We found that participants liked a low-performing com-
petitor robot more than a high-performing one, even though
they considered the latter to be more competent. Participants’
perception of their ability to do well on this task was also
affected by the robot’s performance. They considered them-
selves less competent when the robot performed better, even
when controlled for their own score.
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