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Abstract

With the aim of fluency and efficiency in human-robot teams,
we have developed a cognitive architecture based on the
neuro-psychological principles of anticipation and perceptual
simulation through top-down biasing. An instantiation of
this architecture was implemented on a non-anthropomorphic
robotic lamp, performing in a human-robot collaborative task.
In a human-subject study, in which the robot works on a
joint task with untrained subjects, we find our approach to be
significantly more efficient and fluent than in a comparable
system without anticipatory perceptual simulation. We also
show the robot and the human to be increasingly contribut-
ing at a similar rate. Through self-report, we find significant
differences between the two conditions in the sense of team
fluency, the team’s improvement over time, and the robot’s
contribution to the efficiency and fluency. We also find dif-
ference in verbal attitudes towards the robot: most notably,
subjects working with the anticipatory robot attribute more
positive and more human qualities to the robot, but display
increased self-blame and self-deprecation.

Introduction
Our goal is to design robots that can work fluently with a hu-
man partner in a physically situated setting. Fluency in joint
action is the quality existent when two agents perform to-
gether at high level of coordination and adaptation, in partic-
ular when they are well-accustomed to the task and to each
other. This quality is observed in a variety of human behav-
iors, but is virtually absent in human-robot interaction.

Neurological and psychological evidence in humans indi-
cates that anticipation and perceptual simulation plays a role
in perception, in the perception of conspecifics, and in joint
action (Wilson and Knoblich 2005; Sebanz, Bekkering, and
Knoblich 2006). In simulated agents acting with humans,
we have shown anticipation to lead to improved task effi-
ciency and fluency, as well as a perceived commitment of a
simulated robot to the team and its contribution to the team’s
fluency and success (Hoffman and Breazeal 2007).

Based on these findings, we believe that anticipation
through perceptual simulation can provide a powerful model
for robots acting jointly with humans if they are to collabo-
rate fluently using multi-modal sensor data. To that end, we
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developed a cognitive architecture based on the principles
of embodied cognition and top-down perceptual simulation,
ideas which are gaining ground in the neuroscientific litera-
ture in recent years (Barsalou 1999; Wilson 2002).

In this paper we introduce some core concepts of our
cognitive framework and its implementation on a non-
anthropomorphic robot designed for human-robot collabo-
ration. We discuss a controlled human subject study con-
ducted to evaluate the performance of the implemented sys-
tem, and the effects it has on the efficiency and fluency of
the task, as well as on the human subjects’ perception of the
robot and the team. We are particularly interested in how the
system performs within the context of practice, in which the
human and the robot repeat a set of identical actions.

Related Work
Human-robot collaboration has been investigated in a num-
ber of previous works, although the question of fluent action
meshing or the improvement thereof through repetition has
not received much attention. Kimura et al. have studied a
robotic arm assisting a human in an assembly task (Kimura,
Horiuchi, and Ikeuchi 1999). Their work addresses issues of
vision and task representation, but does not address antici-
pation, fluency, or practice. Some work in shared-location
human-robot collaboration has been concerned with the me-
chanical coordination and safety considerations of robots
in shared tasks with humans (Woern and Laengle 2000;
Khatib et al. 2004) . Other work addresses turn-taking and
joint plans, but not anticipatory action or fluency (Hoffman
and Breazeal 2004). Anticipatory action, without relation
to a human collaborator has been investigated in navigation
work, e.g. (Endo 2005).

The idea of top-down biasing has been utilized in compu-
tational systems in the past, e.g. in visual action recognition
(Bregler 1997). Wren and Pentland created a robust human
dynamic recognition and classification system by feeding
likelihood data from high-level HMM procedures to pixel-
level classifiers (Wren, Clarkson, and Pentland 2000). Ude
et al. discuss similar top-down processing ideas for visual
attention on a humanoid robot (Ude, Moren, and Cheng
2007). None of these works, however, model the top-down
influences as perceptual simulation using the same pathways
used for bottom-up processing, as supported by the neuro-
psychological literature, and proposed in this paper.
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Our own previous work in anticipatory action to sup-
port human-robot fluency was implemented on a simulated
agent, using a discretized model framed as a stepwise MDP
with simulated perception, and no perceptual simulation
(Hoffman and Breazeal 2007). This paper significantly ex-
tends this work as it models anticipation through the simula-
tion of perceptual symbols. Furthermore, it is implemented
on a physical robot using noisy, continuous sensory input,
acting in a situated interaction with a moving human.

Cognitive Architecture
We propose that fluency in joint action achieved through
practice relies on two processes: (a) anticipation based on a
model of repetitive past events, and (b) the modeling of the
resulting anticipatory expectation as perceptual simulation,
affecting a top-down bias of perceptual processes.

Modality Streams and Process Nodes
In this model, perceptions are processed in modality streams
built of interconnected process nodes. These nodes can cor-
respond to raw sensory input (such as a visual frame or a
joint sensor), to a feature (such as the dominant color or ori-
entation of a sensory data point), to a property (such as the
speed of an object), or to a higher-level concept describing a
statistical congruency of features of properties, in the spirit
of the Convergence Zones in (Simmons and Barsalou 2003).

Modality streams are connected to an action network con-
sisting of action nodes, which are activated in a similar man-
ner as perceptual process nodes. An action node, in turn,
leads to the performance of a motor action. Connections
between nodes in a stream are not binary, but weighted ac-
cording to the relative influence they exert on each other.

Importantly, activation flows in both directions, the affer-
ent—from the sensory system to concepts and actions—and
the opposite, efferent, direction.

Each node contains a floating-point activation value, α,
which represents its excitatory state, may affect its internal
processing, and is in turn forwarded (potentially altered by
the node’s processing) to the node’s afferent connections.

A separate simulated activation value σ is also taken into
account in the node’s activation behavior and processing as
follows: σ is added to the activation propagation when a
node activates its afferent process nodes. Also, σ + α is
used as a motor action trigger value in the action nodes. This
allows us to model priming:

Priming
In humans, we observe the psychological phenomenon of
“priming”, or the bias (often measured as a decrease in
response time) towards a previously triggered sensory or
memory event. Such priming can occur through cross-modal
activation, through previous activation, or from memory re-
call. Seen as a core element in fluent joint action, we can
model priming through the efferent pathways in the modality
streams: If a certain higher-level node n is activated through
priming, the lower-level nodes that feed n are partially ac-
tivated through the simulation value σ on the efferent path-
way. As σ is added to the sensory-based activation α in the
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Figure 1: A process node within a modality stream.
Weighted activation travels both up from sensory events to
concepts an actions (the afferent pathway), and—through
simulation—back downstream (the efferent pathway).

lower-level nodes, this top-down activation inherently low-
ers the perceptual activation necessary for the activation of
those lower-level nodes, decreasing the real-world sensory-
based activation threshold for action triggering. The result of
this is reduced response time for anticipated sensory events,
and increasingly automatic motor behavior.

For example, let us assume a simple sensory activa-
tion stream which includes a sensor detecting the one-
dimensional position x ∈ [−1, 1] of an object of interest.
This sensor feeds into two feature nodes, which correspond
to the object being “left” or “right”. In this example, the
activation α ∈ [0, 1] of the “left” node would correspond
to max(−x, 0), and the activation of “right” to max(x, 0).
These two feature nodes feed, in turn, into a “left” action or
a “right” action to be performed.

If the robot was primed toward a “left” perception (for
example by a vocal command, through a related sensory or
memory event, or by anticipation), the efferent connection to
the “left” feature node would partially activate by receiving
a simulation value σ. Then, even a slighter negative value of
xwould be sufficient to activate the feature node completely,
resulting in an earlier appropriate action on the robot’s part.

Practice Subsystems
In the proposed architecture, we use two subsystems to sup-
port practice.

History-based anticipatory simulation The first subsys-
tem is a Markov-chain Bayesian predictor, building a proba-
bilistic map of node activation based on recurring activation
sequences during practice. This system is in the spirit of
the anticipatory system described in (Hoffman and Breazeal
2007). It triggers high-level simulation, which—through the
modality stream’s efferent pathways—biases the activation
of lower-level perceptual nodes.

If the subsequent sensory data supports these perceptual
expectations, the robot’s reaction times are shortened as de-
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scribed above. In the case where the sensory data does not
support the simulated perception, reaction time is longer and
can, in some cases, lead to a short erroneous action, which is
then corrected by the real-world sensory data. While slower,
we believe that this “double-take” behavior, often mirrored
by the human partner’s motion, may contribute to the hu-
man’s sense of similarity to the robot.

Inter-modal connection reinforcing An additional mech-
anism of practice is that of weight reinforcement on exist-
ing activation connections. While most node connections
are fixed, some can be assigned to a connection reinforce-
ment system, which will dynamically change the connection
weights between the nodes. This system works according to
the contingency principle, reinforcing connections that co-
occur frequently and consistently, and decreasing the weight
of connections that are infrequent or inconsistent.

This subsystem thus reinforces consistent coincidental ac-
tivations, but inhibits competing reinforcements stemming
from the same source node, leading to anticipated simulated
perception of inter-modal perception nodes. This, again,
triggers top-down biasing of lower-level perception nodes,
shortening reaction times as described above.

Application
We have implemented an instantiation of the proposed archi-
tecture on a robotic system, which we subsequently used to
evaluate our approach in a controlled human-subject study.

Robotic Platform
The robot employed in this evaluation was AUR, a robotic
desk lamp, seen in Figure 2 (b). The lamp has a 5-degree-
of-freedom arm and a LED lamp which can illuminate in a
range of the red-green-blue color space. AUR is stationary
and mounted on top of a steel and wood workbench locating
its base at approximately 90 cm above the floor. Its process-
ing is done on a 2x Dual 2.66GHz Intel processor machine
located underneath the workbench.

The robot uses a Vicon motion capture system to identify
and track the location and orientation of the human’s right
hand at a frequency of 10 times per second. This was made
possible by a special glove with retroflective markers on it,
worn on the human’s right hand.

The system also takes input from Sphinx-4, an open-
source speech recognition system created at Carnegie Mel-
lon University, in collaboration with Sun Microsystems,
Mitsubishi, and Hewlett Packard (Walker et al. 2004). The
commands recognized by the system were: “Come”, “Come
Here”, “Go”, “Red”, “Blue”, “Green”, and “Off”.

Task Description
In the human-robot collaboration used in our studies, the hu-
man operates in a workspace as depicted in Figure 2 (a) and
(b). The robot can direct its head to different locations, and
change the color of its light beam. When asked to “Go”,
“Come”, or “Come here” the robot would point towards
the location of the person’s hand, if the hand was relatively
static. Additionally, the color changed in response to speech
commands to one of three colors: blue, red, and green.

The workspace contained three locations (A,B,C). At
each location there was a white cardboard square labeled
with the location letter, and four doors cut into its sur-
face. Each door, when opened, revealed the name of a color
printed underneath.

The task was to complete a sequence of 8 actions, which
was described in diagrammatical form on a sequence sheet
as shown in Figure 2 (c). This sequence was to be repeated
10 times, as quickly as possible.

Each action in the sequence specifies: a general location
A, B, or C, and an indication of which of the four doors to
open. The action is completed when the lamp shines the
specified color of light at that location. This would result
in the sound of a buzzer, indicating the person should move
to the next action in the sequence. A different buzzer was
sounded when a whole sequence was completed. Neither
the human nor the robot know the order of actions in the
task sequences, or the names of the colors hidden behind the
doors, at the beginning of the task.

History-based anticipatory simulation
Using a 3-step sequence history Markov model, the learner
estimates the probability of the appropriate target board, and
the “Go” action being expected. The probability of a certain
concept to be triggered next is translated into a simulation
value σ. This value is then propagated on the efferent path-
way, biasing visual perceptual nodes. As a result, feature
nodes simulate to the extent that they are correlated with
the appropriate hand-target concept. Thus an increasing dis-
tance between the hand position and the correct target is ade-
quate to trigger the appropriate response, and robot reaction
time is decreased.

Inter-modal connection reinforcing
In addition, we used inter-modal simulation between the
robot’s proprioceptive property nodes, which sense the
robot’s joint configuration, and auditory feature nodes.
Thus, certain physical configurations of the robot lead to the
simulation of a certain word in the auditory stream, result-
ing in the perceptual simulation of that speech segment every
time the robot reaches a certain position. If there is a con-
sistent correlation between position and color, the robot will
increasingly trigger the appropriate color without an explicit
human command.

Experimental Design
To evaluate the validity of our approach to human-robot
teamwork, we conducted a between-group controlled exper-
iment with two conditions. The control (or REACTIVE)
condition corresponds to the baseline condition in which
no anticipatory simulation or cross-modal reinforcement oc-
curred. The remainder of the system, i.e. the perceptual net-
work and all activation streams and thresholds, were iden-
tically retained. In the second (FLUENCY) condition, the
simulation subsystems were active with fixed parameters.

We recruited 38 subjects, who were arbitrarily designated
to one of the two experimental conditions. At the last day of
the experiment we experienced an unrecoverable hardware
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Figure 2: (a) Diagram, and (b) photograph of the collaborative lighting task workspace. (c) Sample experimental sequence.

failure, forcing us to release the last 5 subjects. We thus
remained with 33 subjects (17 male), 15 in the REACTIVE
condition, and 18 in the FLUENCY condition.

In sections below we will use the following terminology:

Turn is the time and actions occurring between two con-
secutive turn buzzers. These include a single event of cor-
rectly shining the right light onto the right board.

Sequence is a set of eight turns. There are ten attempts at
a sequence.

Round is a set of ten attempts at a sequence. There are two
rounds in a full task run.

Results
We have confirmed a number of behavioral hypotheses relat-
ing to the efficiency and fluency of the human-robot team,
among them the following four metrics: a significant im-
provement in task time (REACTIVE: 1401.66 ± 162.90
secs, FLUENCY: 1196.26 ± 226.83 secs; t(24)=2.609, p <
0.05), a significant improvement in mean sequence time
(REACTIVE: 141.38 ± 17.38 secs, FLUENCY: 116.21 ±
22.67 secs; t(30)=3.487, p < 0.01), in human idle time
(REACTIVE: 0.46 ± 0.08 %, FLUENCY: 0.364 ± 0.09 %;
t(30)=3.001, p < 0.01)1, and in the robot’s functional de-
lay (REACTIVE: 4.81±9.91 secs, FLUENCY: 3.66±15.72
secs; t(30)=2.434, p < 0.05)1. These efficiency and fluency
results are further elaborated upon in a separate publication
(Hoffman and Breazeal 2008).

Relative contribution of human and robot
As both the human and the robotic team members undergo
a learning curve of adapting to the collaborative task, we are
interested in the relative contribution of each team member
to the improvement of the team, comparing the learning rate
of the human and the robot.

We estimated this measure as follows: For each sequence
attempt, we compare two of the above-mentioned metrics to
the value of the same metric in the first attempt of a given

1Adapted from (Hoffman and Breazeal 2007).

round. As the first round may include a few practice at-
tempts, we only evaluate the second round for each subject.

Since the robot does not adapt or learn in the REACTIVE
condition, we consider the improvement of the team in that
group to be solely on behalf of the human. We call this “the
human contribution” to the team’s improvement. Subtract-
ing the human contribution function from the improvement
of the team in the FLUENCY condition, we obtain “the robot
contribution” to the team’s improvement.

Figure 3 (a) shows the relative contribution of the team
members on the improvement in sequence time. We find that
the rate of adaptation on the robot’s part roughly matches
that of the human, both contributing to about 20% of the re-
duction in sequence time over the course of a ten-attempt ex-
perimental round. We postulate that this phenomenon may
contribute to an increased sense of partnership and “like-me”
perception in human-robot teams.

In Figure 3 (b) we show the contribution to the robot’s
functional delay (a measure that has been shown to be re-
lated to team fluency). Again, we see a similar adaptation
curve, but on this metric the robot’s contribution converges
on roughly twice that of the human, contributing to a circa
40% improvement compared to the human’s circa 20%.

Self-Report Questionnaire
In addition to the behavioral metrics we have administered
a self-report questionnaire including 41 questions. These
questions were aimed to evaluate the human teammates’ re-
action to the robot with and and without perceptual simu-
lation. 38 questions asked the subjects to rank agreement
with a sentence on a 7-point Likert scale from “Strongly
Disagree” (1) to “Strongly agree” (7). Three questions were
open ended responses. We have compounded the questions
into nine scales we propose to be valuable to evaluate fluent
human-robot teamwork.

In this paper we will focus on the following four scales:
• FLUENCY — The sense of fluency in the teamwork;
• IMPROVE — The team’s improvement over time;
• R-CONTRIB — The robot’s contribution;
• R-TRUST — The human’s trust in the robot;
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Figure 3: Relative contribution of the team members on (a) sequence time, and (b) robot delay.

In addition we measure three individual questions:

• R-FLUENT — The robot’s contribution to the fluency;

• H-COMMIT — The human’s commitment to the task;

• R-ADAPT — The robot’s adaptation to the human.

We hypothesized there to be a significant difference in
these metrics between the two conditions, and specifically
that these metrics be higher for the FLUENCY condition.

Table 1: Survey questionnaire results metrics. Values are
mean± s.d.. on a 7-point Likert scale.

Metric REACTIVE FLUENCY t(31)
FLUENCY 4.98± 0.96 5.93± 0.98 2.80 **
IMPROVE 5.16± 0.96 6.17± 1.09 2.80 **
R-CONTRIB 2.85± 1.11 4.00± 1.32 2.69 *
R-TRUST 4.90± 1.25 5.42± 1.28 1.17
R-FLUENT 4.73± 1.22 6.11± 1.18 3.28 **
H-COMMIT 6.40± 0.74 5.83± 1.10 1.70
R-ADAPT 3.47± 1.46 5.94± 1.06 5.66 ***

Table 1 shows the results for the questionnaire hypothe-
ses, and reveals significant differences between subjects in
the two experimental conditions with regard to the fluency
scales in the questionnaire. Both the FLUENCY and the
R-FLUENTmeasures are significantly different at p < 0.01.
Additionally, subjects in the FLUENCY condition rated the
robot’s contribution to the team significantly higher than
subjects in the REACTIVE condition, as well as the team’s
overall improvement. This supports our hypothesis that the
proposed architecture contributes to the quality of fluency
and collaboration in human-robot teams.

While these task-related scales differ significantly, we
were not able to show a significant difference in the trust the
human put in the robot, or in the human’s commitment to
the task—which was incidentally higher for the REACTIVE
condition, if not significantly so. We believe that this is in

part due to the low expectation people have of robots, which
caused the evaluation of the REACTIVE robot to be high as
a response to the robot’s generally reliable functioning.

Open-ended responses The qualitative response of sub-
jects in the open-ended responses of subjects in the
FLUENCY condition was more favorable than that of sub-
jects in the REACTIVE condition.

Positive comments in the FLUENCY condition included
subjects reporting to be “highly impressed [with the robot’s]
learning”, and a subject saying that the robot “worked well,
and I felt a sense of relief/relaxation when it just did what
I was about to tell it to do.” Such positive comments were
rare in the REACTIVE condition.

Several negative comments, in particular with regards
to the robot’s contribution as a team member, were found
throughout the comments of subjects in the REACTIVE con-
dition. These included “The robot was more of an assistance
than an active team member”, and “I felt like I was control-
ling the robot, rather than it being part of a team.” In con-
trast, subjects in the FLUENCY condition remarked on the
robot’s contribution to the team, and referred to it several
times as a teammate: “By the end of the first sequence I re-
alized that he could learn and work as my teammate”, and
“my interaction with the robot was not that different than
with a human teammate.”

Self-deprecation in the FLUENCY condition A surpris-
ing result was that in the FLUENCY condition we found a
high number of self-deprecating comments, and comments
indicating worry or stress of fallible human performance in
relation to the robot’s strong performance. Several subjects
in that condition remarked on stressful feelings that they
weren’t performing at an adequate level.

These remarks included “I would essentially forget the
pair of colors I had [memorized] - this slowed me down”,
“The robot is better than me”, “The performance could had
been better if I didn’t make those mistakes”, “[I] worried
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that I might slow my teammate down with any mistakes I
might have made”, and even “I am obsolete”. There were no
similar comments in the REACTIVE condition.

While it is beyond the scope of this work to further ex-
plore this aspect of our findings, it should be of interest to
designers in the human-robot interaction field. The preva-
lence of this reaction may indicate a need for humans to feel
more accomplished than the robot they are interacting with.
Maintaining the balance of increased robot responsiveness,
and the intimidation that might result is an overlooked aspect
of HRI, which these results urge us to consider.

Lexical analysis We confirmed these anecdotal findings
using an independent qualitative coding of the open ques-
tion responses. Specifically, subjects in the FLUENCY con-
dition commented on the robot more positively, and subjects
in the REACTIVE condition commented on the robot more
negatively. FLUENCY subjects attributed more human char-
acteristics to the robot, although there is little difference in
the emotional content of the comments.

Also, gender attributions, as well as attributions of intelli-
gence occurred only in the FLUENCY condition, while sub-
jects in the REACTIVE conditions tended to comment on the
robot as being unintelligent. Finally, we did confirm the ten-
dency to self-deprecating comments as more prevalent in the
FLUENCY condition. A full description of the lexical analy-
sis is available in a separate publication (Hoffman 2007).

Conclusion
For robots to act in fluently with a human partner, in a real-
world situated teamwork scenario, they must overcome strict
turn-taking behavior, which induces delays and inefficien-
cies, and can cause frustration. This is particularly true for a
repetitive joint task, where the human teammate expects an
increasingly meshed interaction with the robot.

We introduce a novel cognitive architecture aimed at
achieving fluency in human-robot joint action. Based on
neuro-psychological findings in humans, we propose a per-
ceptual symbol system, which uses anticipatory simulation
and inter-modal reinforcement to decrease reaction time
through top-down biasing of perceptual processing.

We present a human subject study evaluating the effects of
our approach, comparing it with a system using only bottom-
up processing. We find significant differences in the task ef-
ficiency and fluency between the two conditions. Evaluating
the relative contribution of the human and the robot, and find
a similar learning curve, possible contributing to the human
subjects’ sense of similarity to the robot.

From self-report, we find significant differences in the
perception of the team’s fluency and the robot’s contribution
to that fluency, as well as in a number of other self-report
metrics. Interestingly, we also find a tendency towards self-
criticism in subjects collaborating with the anticipatory ver-
sion of the robot.
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